A macroeconomic-demographic model for Ethiopia: Specification, estimation and simulation

Asmerom Kidane

Statistics Department, Addis Ababa University

AERC Research Paper 7
Initiatives Publishers, Nairobi
October 1991
Contents

List of Tables iv
List of Figures iv

I Introduction 1

II Description of a simplified economic-demographic model 3

III Mathematical formulation of the model 5
   The economic sub-model 5
   The demographic sub-model 7

IV Data sources 9

V Results and applications 10
   The economic sub-model 11
   The demographic sub-model 13
   Simulation 13

VI Conclusion 16

Notes 17
References 18
List of tables

1. Summary statistics of selected economic-demographic variables 9
2. Regression of age-specific fertility rates 10
3. Regression of age-specific survival rates for rural and urban areas 11
4. Projected economic and demographic variables under reduced fertility schedules 15

List of figures

1. Schematic presentation of economic-demographic interaction 4
I. Introduction

The population variable was not given due attention by classical and development economists until the early 1950s. The earliest “economic demographer”, Malthus, tried to show that a high rate of population growth would eventually lead to a negative marginal product of labour and that this would, in turn, lead to a high mortality rate. Malthus stated that the equilibrium between man, capital and land would be retained through what he called positive and preventive checks.

Notestein (1945) and others tried to develop the concept of demographic transition by implying that a higher level of economic development was a prerequisite for a lower rate of population growth. This relationship was also implied by Marx. As a result of this, it seems that in the process of development planning, the population variable has been treated as exogeneous—i.e. a variable that is determined outside the system and that nothing can be done to alter it.

The first attempt to depart from this was that by Coale and Hoover (1958). While these authors showed that there is a negative relationship between population growth and economic development, they also treated population as an endogenous or policy variable. In other words, they tried to show that a country can reach a higher stage of economic development if the rate of population growth is slower. The Coale and Hoover model is based on the “dependency ratio” argument, that is, a higher rate of population growth would lead to a larger percentage of younger members in the population, most of whom are dependants. The latter are mostly consumers, not producers. This would, in turn, reduce per capita saving, capital formation and eventually, investment and per capita GDP. The above assumptions were applied for India and Mexico and the results showed that the dependency ratio argument does have some relevance.

Following that pioneering work by Coale and Hoover, Enke (1974) developed a series of simulation models. He described a disaggregated economic-demographic model to study the effects of government-financed fertility reduction programmes on various indicators of development over a 30-year period. Enke’s model is supply constrained since an increase in government expenditure will be at the expense of private consumption and investment. The results show that increased government expenditure on family planning services will increase almost every indicator of economic development.
Figure 1  Schematic presentation of economic-demographic interaction
III. Mathematical formulation of the model

Having classified the economy into traditional and modern sectors, along with government and the rest of the world sectors, we now present the functional relations for our macroeconomic demographic model. The model will contain economic and demographic sub-models.

The economic sub-model

There will be three production functions, two for the agricultural sector and one for the non-agricultural sector. The agricultural production function will be for cash and other crops. A Cobb Douglas-type production function will be assumed. The models are:

1. \( Y_{AC} = f_1(L^b, L^s) \)
2. \( Y_{AO} = f_2(L^b, L^2) \)
3. \( Y_{NA} = f_3(L^{b'}, K^A) \)
4. \( Y = Y_{AC} + Y_{AO} + Y_{NA} \)
5. \( L = L^b + L^{b'} + L^o \)

In the above specification, \( Y_{AC}, Y_{AO}, Y_{NA} \) are outputs of agricultural cash crops, other agriculture and non-agricultural output, respectively; \( L^b, L^{b'}, L^o \) are labour inputs; \( L^s \) and \( L^{b'} \) land cultivated; \( K^A \) is capital input in the non-agricultural sector; and \( L \) is the total labour force.

Consumption

There will be two different consumption functions, one for the private sector and another for government. Because of data constraints, different consumption
functions for the traditional and modern sector could not be specified. The two functions are:

(5) Private consumption \( CP = f_5(YD, CP - 1) \)
(6) Government consumption \( CG = f_6(Y, P) \)
(7) Aggregate consumption \( C = CP + CG \)

\( YD, P \) and \( C \) are per capita GDP, population and consumption, respectively.

The foreign trade sector

This sector will be represented by four equations—two for the export of coffee and other items, and two for the import of oil and other commodities.

The export equation:

(8) \( X^c = f_6(Q^c, P^c) \)
(9) \( X^o = f_9(P^o) \)
(10) \( X = X^c + X^o \)

In the above functions, \( X^c \) and \( X^o \) represent export of coffee and of other commodities, respectively, and \( X \) is the aggregate export, \( Q^c, P^c \) and \( P^o \) represent the amount of coffee produced and price indices of coffee and other commodities, respectively.

The import equation:

(11) \( M^f = f_{11}(X_{-1}, Y_p, P^f) \)
(12) \( M^o = f_{12}(X_{-1}, Y_p, P^o) \)
(13) \( M = M^f + M^o \)

Again, \( M^f \) and \( M^o \) represent imports of fuel and other commodities, respectively, while \( M \) is the aggregate value of the same. Both equations are functions of lagged total export \( (X_{-1}) \), the respective import price indices and per capita income.

The economic sub-model assumes that at an equilibrium point aggregate output equals aggregate demand. The sub-model is closed by the identity which states that investment is total income less consumption plus net exports.

(14) \( I = (Y - C - X + M) \)
The demographic sub-model

Fertility and mortality

There are various ways of modelling the demographic behavioural equations and identities. Assuming that data would be available, the most effective way of capturing the determinants of demographic variables would be to follow the lines suggested by Tung (1984). In the latter's study, demographic sub-models were classified into age-specific fertility rate, labour force participation rate and mortality or survival rates. Unlike Tung's paper, the above specification would not have a separate estimation for male and females. Also, we will not differentiate between total labour force and labour force participation rate.

There are many socio-economic variables that determine age-specific fertility and survival rates. To include all possible determinants would not be feasible due to data constraints. Simon (1976) goes to the extent of stating that the inclusion of too many explanatory variables may not be sensible. Tung and Simon suggest a single but common composite explanatory variable which is income per equivalent adult consumer. In our case, we will apply income per capita as an explanatory variable. We will have separate functions for the rural and urban population.

\[(15-21) \quad ASFR^R_a = f_{15-21} (YUR)\]

\[(22-28) \quad ASFR^U_a = f_{22-28} (YUR)\]
\[a = 1, 2, \ldots 7\]

\[(29-41) \quad ASSR_a = f_{29-41} (YUR)\]
\[a' = 1, 2, \ldots 13\]

In the above functions, \(ASFR^U_a\) and \(ASFR^R\) are age-specific fertility rate of urban and rural women where the age of the women is grouped by the conventional five-year intervals; \(ASSR_a\) is average age-specific survival rate of rural and urban population; \(a'\) is the conventional five-year interval, the upper limit of which is 65 years and above. \(YUR\) and \(YUR\) are the per capita income of the rural and urban populations respectively.

Estimating the age-specific fertility and mortality rates will give us an indication of the effects of changing age distribution. Once these age-distribution effects are identified, we will be able to project the population. One of the most common methods of population projection, namely the "component method", will be applied in the process of projection. After the component method is applied to forecast age-specific future population for each sub-sector, the total population will be obtained by aggregation.
Internal migration

Internal migration is another demographic variable that has an effect on the growth distribution of the population, as well as on the labour force. One of the major reasons for classifying the economy into modern and traditional sectors would be to study rural-urban migration, its rates and determinants. Internal migration in developing countries has been studied by Lewis (1954), Niho and Sato (1971), Yap (1976), and others through the “dualism” concept.

Many economists have tried to identify the major determinants of migration. By far the most important determinant of urban rural migration is the income differential between the agricultural (traditional) and modern sectors. The migration equation will not be age specific and will be given as follows:

\[ MIG = f_{50} (YUR - YRUR) \]

Where \( MIG \) is the number of net migrants to urban areas.
IV. Data sources

Generally, it is not easy to obtain all the necessary time-series data for estimating the preceding model. It is even more difficult when one tries to estimate the relatively complex model for Ethiopia.

Time-series data that are reliable, up to date and internally consistent are hard to come by. However, an attempt was made to collect the necessary information. Information on GDP and its various components was obtained from various annual publications such as the Ethiopian Statistical Abstracts, as well as from Annual Reports of the National Bank of Ethiopia. GDP and its various components are given in Ethiopian currency (Birr). The same is true for private and government consumption as well as various components of export and import. Also acreage planted and labour input is given in hectares and number of workers respectively. On the other hand all prices are given in relative terms. These data are satisfactory. However, the demographic variables were available only for selected years, and various methods of extrapolation were used to fill in the missing values. Table 1 shows the mean variance and minimum and maximum values of some relevant variables. The table shows that the data seem to be within acceptable limits.

<table>
<thead>
<tr>
<th>Table 1 Summary statistics of selected economic demographic variables*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
</tr>
<tr>
<td>----------------------</td>
</tr>
<tr>
<td>ASSR 0-4</td>
</tr>
<tr>
<td>ASSR 20-24</td>
</tr>
<tr>
<td>ASSR 50-54</td>
</tr>
<tr>
<td>ASSFR25-29</td>
</tr>
<tr>
<td>ASSFR25-29</td>
</tr>
<tr>
<td>YAO</td>
</tr>
<tr>
<td>CP</td>
</tr>
<tr>
<td>Xa</td>
</tr>
<tr>
<td>MF</td>
</tr>
<tr>
<td>pc</td>
</tr>
<tr>
<td>fF</td>
</tr>
</tbody>
</table>

* Some of the observations are measured in physical quantities while others are in money terms.
V. Results and applications

Both Ordinary Least Square (OLS) and 2SLS were applied in estimating the behavioural equations. The two methods give similar results, and OLS estimates are given in Tables 2 and 3. Only the functional forms that give a better fit are presented.

Table 2  Regression of age-specific fertility rates

<table>
<thead>
<tr>
<th>Age group</th>
<th>Urban Intercept</th>
<th>Urban Slope</th>
<th>Urban Adjusted R²</th>
<th>Rural Intercept</th>
<th>Rural Slope</th>
<th>Rural Adjusted R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>15–19</td>
<td>0.109</td>
<td>-0.001</td>
<td>0.79</td>
<td>-0.184</td>
<td>0.005</td>
<td>0.78</td>
</tr>
<tr>
<td></td>
<td>(21.84)</td>
<td>(-6.21)</td>
<td></td>
<td>(-4.05)</td>
<td>(6.74)</td>
<td></td>
</tr>
<tr>
<td>20–24</td>
<td>0.271</td>
<td>-0.0002</td>
<td>0.96</td>
<td>-0.067</td>
<td>0.005</td>
<td>0.73</td>
</tr>
<tr>
<td></td>
<td>(199.48)</td>
<td>(-16.06)</td>
<td></td>
<td>(-1.35)</td>
<td>(5.96)</td>
<td></td>
</tr>
<tr>
<td>25–29</td>
<td>0.252</td>
<td>-0.0001</td>
<td>0.94</td>
<td>0.864</td>
<td>-0.009</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td>(1213.76)</td>
<td>(12.669)</td>
<td></td>
<td>(4.23)</td>
<td>(-2.96)</td>
<td></td>
</tr>
<tr>
<td>30–34</td>
<td>0.233</td>
<td>-0.0003</td>
<td>0.95</td>
<td>0.383</td>
<td>-0.003</td>
<td>0.74</td>
</tr>
<tr>
<td></td>
<td>(86.22)</td>
<td>(-13.90)</td>
<td></td>
<td>(11.54)</td>
<td>(-6.15)</td>
<td></td>
</tr>
<tr>
<td>35–39</td>
<td>0.121</td>
<td>0.0001</td>
<td>0.94</td>
<td>0.315</td>
<td>-0.003</td>
<td>0.42</td>
</tr>
<tr>
<td></td>
<td>(128.64)</td>
<td>(12.04)</td>
<td></td>
<td>(5.61)</td>
<td>(-3.207)</td>
<td></td>
</tr>
<tr>
<td>40–44</td>
<td>0.014</td>
<td>0.0004</td>
<td>0.96</td>
<td>0.365</td>
<td>-0.005</td>
<td>0.79</td>
</tr>
<tr>
<td></td>
<td>(5.13)</td>
<td>(15.40)</td>
<td></td>
<td>(8.53)</td>
<td>(-6.98)</td>
<td></td>
</tr>
<tr>
<td>45–49</td>
<td>0.179</td>
<td>-0.0006</td>
<td>-0.11</td>
<td>-0.003</td>
<td>0.001</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>(0.511)</td>
<td>(-0.19)</td>
<td></td>
<td>(-0.14)</td>
<td>(1.761)</td>
<td></td>
</tr>
</tbody>
</table>


Table 3  Regression of age-specific survival rates for rural and urban areas

<table>
<thead>
<tr>
<th>Age group</th>
<th>Intercept</th>
<th>Slope</th>
<th>Adjusted R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–4</td>
<td>1.367</td>
<td>-0.003</td>
<td>0.923</td>
</tr>
<tr>
<td></td>
<td>(29.599)</td>
<td>(-11.529)</td>
<td></td>
</tr>
<tr>
<td>5–9</td>
<td>1.367</td>
<td>-0.003</td>
<td>0.923</td>
</tr>
<tr>
<td></td>
<td>(29.599)</td>
<td>(-11.529)</td>
<td></td>
</tr>
<tr>
<td>10–14</td>
<td>0.928</td>
<td>0.0003</td>
<td>0.839</td>
</tr>
<tr>
<td></td>
<td>(150.626)</td>
<td>(7.626)</td>
<td></td>
</tr>
<tr>
<td>15–19</td>
<td>0.946</td>
<td>0.0002</td>
<td>0.922</td>
</tr>
<tr>
<td></td>
<td>(11.462)</td>
<td>(11.462)</td>
<td></td>
</tr>
<tr>
<td>20–24</td>
<td>0.932</td>
<td>0.0002</td>
<td>0.923</td>
</tr>
<tr>
<td></td>
<td>(315.33)</td>
<td>(11.551)</td>
<td></td>
</tr>
<tr>
<td>25–29</td>
<td>0.952</td>
<td>0.0001</td>
<td>0.923</td>
</tr>
<tr>
<td></td>
<td>(752.303)</td>
<td>(11.551)</td>
<td></td>
</tr>
<tr>
<td>30–34</td>
<td>0.906</td>
<td>0.0003</td>
<td>0.923</td>
</tr>
<tr>
<td></td>
<td>(176.881)</td>
<td>(11.551)</td>
<td></td>
</tr>
<tr>
<td>35–39</td>
<td>0.949</td>
<td>0.0001</td>
<td>0.923</td>
</tr>
<tr>
<td></td>
<td>(499.640)</td>
<td>(11.551)</td>
<td></td>
</tr>
<tr>
<td>40–44</td>
<td>0.894</td>
<td>0.0004</td>
<td>0.923</td>
</tr>
<tr>
<td></td>
<td>(162.963)</td>
<td>(11.551)</td>
<td></td>
</tr>
<tr>
<td>45–49</td>
<td>0.911</td>
<td>0.0030</td>
<td>0.999</td>
</tr>
<tr>
<td></td>
<td>(499.00)</td>
<td>(252.00)</td>
<td></td>
</tr>
<tr>
<td>50–54</td>
<td>1.781</td>
<td>0.0001</td>
<td>0.923</td>
</tr>
<tr>
<td></td>
<td>(3.649)</td>
<td>(11.885)</td>
<td></td>
</tr>
<tr>
<td>55–59</td>
<td>0.850</td>
<td>0.0001</td>
<td>0.851</td>
</tr>
<tr>
<td></td>
<td>(92.855)</td>
<td>(9.597)</td>
<td></td>
</tr>
<tr>
<td>60–64</td>
<td>0.721</td>
<td>0.0010</td>
<td>0.923</td>
</tr>
<tr>
<td></td>
<td>(51.743)</td>
<td>(11.551)</td>
<td></td>
</tr>
</tbody>
</table>

* An average of the rural and urban survival rates was included.

The economic sub-model

Agricultural production functions

Cash crop

\[
\ln Y_{AC} = -1.20 + 0.16 \ln L + 1.55 \ln L^2 \\
\text{R}^2 = 0.93 \quad F(2, 15) = 112.22
\]

\[
\text{t} = -8.23 \quad (1.54) \quad (14.05)
\]
Other crops
\[ \ln YAO = 6.425 + 0.060 \ln L + 0.351 \ln L_A \]
\( (9.82) \) \( (1.16) \) \( (3.45) \)
\[ R^2 = 0.37, F(2, 15) = 5.97 \]

Non-agricultural production functions
\[ \ln YNA = 2.916 + 0.181 \ln L + 0.787 \ln K^A \]
\( (1.10) \) \( (3.78) \) \( (1.71) \)
\[ R^2 = 0.65, F(2, 12) = 14.01 \]

Government consumption
\[ CG = -1509.910 + 0.13Y + 49.65P \]
\( (2.11) \) \( (0.9) \)
\[ R^2 = 0.96, F(2, 18) = 265 \]

Private consumption
\[ CP = -18.927 + 0.98 YD \]
\( (-4.89) \) \( (42.86) \)
\[ R^2 = 0.99, F(1, 12) = 1.836 \]

Coffee exports
\[ X^C = -53.958 + 129.79 P^C + 1.009 Q^C \]
\( (-0.257) \) \( (3.014) \) \( (0.758) \)
\[ R^2 = 0.65, F(2, 13) = 15.01 \]

Other exports
\[ \ln X^O = 102.793 + 155 P^O - 1 \]
\( (2.194) \) \( (2.762) \)
\[ R^2 = 0.306, F(1, 14) = 7.63 \]

Fuel imports
\[ M^f = -184.935 + 9.657 P^f - 1 + 0.477Y + 0.477 X - 1 \]
\( (-1.402) \) \( (0.491) \) \( (0.340) \) \( (2.660) \)
\[ R^2 = 0.89, F(3, 2) = 42.36 \]

Other imports
\[ M^O = -634.487 + 6.995Y + 0.241X - 1 \]
\( (-2.529) \) \( (2.630) \) \( (0.681) \)
\[ R^2 = 0.88, F(2, 14) = 58.60 \]

Migration
\[ Mig = 0.423 + 0.001 \text{Diff} \]
\( (42.22) \) \( (28.51) \)
\[ R^2 = 0.98, F(1, 12) = 812.72 \]
The empirical results of the economic submodel exhibit high explanatory variables and seem to be satisfactory. However, there are some equations that seem to be peculiar and deserve explanation. The cash crop production function seems to exhibit increasing returns to scale. In this equation the contribution of acreage seems to be quite important while labour's contribution, though positive, was found to be non-significant. The result suggests that land is scarce to labour and hence there may be higher return from one extra hectare of land than the corresponding one extra unit of labour input. On the other hand, the marginal product of labour in the non-agricultural sector seems to be positive and significant.

The marginal propensity to consume, which is 0.98, suggests that the aggregate saving rate is only 2 percent of the disposable income, and this is not unusual in a country that registers the lowest per capita income in the world and has frequent droughts and famines.

Both the coffee and other export equations give the predicted result, suggesting that farmers tend to react to changes in the price of exportable products in the predictable manner. The import of fuel and other commodities is heavily affected by lagged export earning; while price does not seem to have an effect on fuel imports, per capita GDP seems to have a positive and significant effect on the import of non-fuel items.

The demographic sub-model

Like the economic sub-model, the demographic sub-model seems to show satisfactory results. However, in some age groups the relation between fertility, on the one hand, and the explanatory variable (income), on the other did seem to be counter-intuitive. This is especially so in the later stages of women's reproductive period. Moreover, the explanatory power of the fertility equations at ages 45–49 is quite low. The reason for such a result may be the low number of observations within this age group. The age-specific survival rate in Table 3 suggest that there is little difference in the relation between age-specific survival rate and per capita GDP for most of the age groups. The unexpected negative sign of the slope among the age category 5–9 may be attributed to the possible age misreporting among this group.

In general, one can use the economic and demographic estimates for simulation purposes.

Simulation

Having specified the economic-demographic sub-models, we now attempt to show the interaction between the two. This is done by changing the coefficients
of the demographic sub-model and studying its effect on various components of
the economic variables, such as aggregate and per capita GDP as well as GDP
per adult equivalent consumer. Our approach is similar to that followed by Tung
(1984). The steps that we will follow are:

(a) Fertility was reduced by shifting the constant term of the age-specific
fertility equations by 25 and 50 percent, respectively. It is assumed that
mortality rates will behave in the future in the same as they did in the past.

(b) Based on the assumption in (a) we re-estimated the rate of population
growth and projected the Ethiopian population by the conventional five-
year groups. The projected population is for both rural and urban centres
and for the years 2000 and 2010. The year 1985 is the initial period. Rural-
urban migration was also taken into consideration in the projection of the
population. The results are given in the upper part of Table 4.

The labour force in both rural and urban centres for the two projected periods
is given and this was integrated with the relevant production functions within
the economic sub-model. We then estimated the GDP from cash, non-cash and non-
agriculture. This was added so as to get the overall GDP for the years 2000 and
2010. When forecasting the various components of the GDP, we assume that
acreage, capital input and investment will continue to increase at the same rate
as they did in the past. The projected economic variables are given in the lower
part of Table 4.

The projected components of GDP suggest that the cash crop cultivation will
constitute a larger portion of agricultural production both in terms of acreage
and exported revenues. This is because of the relatively elastic response of yield
to acreage cultivated. Non-agricultural production will also make up a larger
portion of GDP in the years 2000 and 2010. The projected results also suggested
a longer growth of export earning compared to import payments.

The results show that the 15–14-year-old agricultural labour force will be
increased by 21 and 39 percent, respectively for the two forecast periods. For the
non-agricultural sector, the labour force will be increased by 1.86 and 4.2 times
for the two forecast periods, respectively. Based on this assumption, a reduced
population growth will mean that the GDP will increase by only 75 and 188
percent for the two periods. On the other hand, per capita GDP will increase by
36 and 94 percent for a lower fertility reduction. A significant increase is
observed when one considers GDP per adult equivalent consumer as well as
higher fertility reduction.
<table>
<thead>
<tr>
<th>Age group</th>
<th>Rural</th>
<th>Urban</th>
<th>Rural</th>
<th>Urban</th>
<th>Rural</th>
<th>Urban</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-4</td>
<td>7.02</td>
<td>6.56</td>
<td>1.30</td>
<td>3.83</td>
<td>1.15</td>
<td>3.83</td>
</tr>
<tr>
<td>5-9</td>
<td>5.85</td>
<td>5.85</td>
<td>3.80</td>
<td>3.80</td>
<td>1.87</td>
<td>1.87</td>
</tr>
<tr>
<td>10-14</td>
<td>4.88</td>
<td>4.24</td>
<td>3.22</td>
<td>3.22</td>
<td>3.22</td>
<td>3.22</td>
</tr>
<tr>
<td>&gt;55</td>
<td>2.33</td>
<td>2.24</td>
<td>0.71</td>
<td>0.71</td>
<td>0.71</td>
<td>0.71</td>
</tr>
<tr>
<td>15-54</td>
<td>20.90</td>
<td>20.90</td>
<td>27.1</td>
<td>27.1</td>
<td>6.28</td>
<td>6.28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GDP from:</th>
<th>2000</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash crops</td>
<td>1.030</td>
<td>1.538</td>
</tr>
<tr>
<td>Other crops</td>
<td>1.523</td>
<td>1.532</td>
</tr>
<tr>
<td>Non-agriculture</td>
<td>1.247</td>
<td>3.652</td>
</tr>
<tr>
<td>Exports</td>
<td>1.314</td>
<td>1.611</td>
</tr>
<tr>
<td>Imports</td>
<td>1.325</td>
<td>1.505</td>
</tr>
<tr>
<td>Investment</td>
<td>7.23</td>
<td>9.63</td>
</tr>
<tr>
<td>GDP at f.c.</td>
<td>4.525</td>
<td>7.754</td>
</tr>
<tr>
<td>GDP per capita</td>
<td>101</td>
<td>136.8</td>
</tr>
<tr>
<td>GDP per adult equivalent</td>
<td>159.3</td>
<td>157.0</td>
</tr>
</tbody>
</table>

1 = 25 percent reduction in the constant term.
2 = 50 percent reduction in the constant term.
VI. Conclusion

The preceding estimation and simulation process showed that one can get some insight into economic-demographic interactions, and that the use of demographic variables as policy instruments could yield a higher per capita income in general and per adult equivalent consumer in particular. The results are based on the assumption that the given state of technology, and the capital labour ratio, will not change significantly. The overall investment, as well as acreage planted, will increase at the same rate as in the past. If a lower fertility rate yields higher per capita GDP, the next question will be how to go about reducing the current high rate (3.0 percent) of population growth in Ethiopia. Obviously it would be impossible to reduce the total fertility rate from 6.6 to 3.4 within a decade or two. However, a start may have to be made.
Notes

1. It will be assumed that the age-specific survival rate of the rural and urban population will decrease at the same rate in the future as it did in the past.

2. A 25–50 percent decrease in the constant term implied a reduction in total fertility rate from 6.6 to 3.4 and 1.9 in the years 2000 and 2010, respectively, for the rural population. For the urban population, this would mean a reduction from 6.21 to 3.72 and 2.06 for the same years.

3. The urban and rural population of Ethiopia in terms of adult equivalents is given as follows:

\[
0-4 = 0.45, \quad 5-9 = 0.65, \quad 10-14 = 0.85, \quad 15+ = 1.0.
\]
References


